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We develop a method of poroelastic relaxation indentation (PRI) to characterize thin layers of gels.

The solution to the time-dependent boundary-value problem is obtained in a remarkably simple

form, so that the force-relaxation curve obtained by indenting a gel readily determines all the

poroelastic constants of the gel—the shear modulus, Poisson’s ratio, and the effective diffusivity.

The method is demonstrated with a layer of polydimethylsiloxane immersed in heptane. VC 2011
American Institute of Physics. [doi:10.1063/1.3647758]

Gels made of crosslinked polymer network and mobile

molecules are used in diverse applications, including drug

delivery,1–3 tissue engineering,4,5 microfluidics,6,7 and fuel

cells.8 The behavior of the gels changes readily with solvent-

polymer chemistry, temperature, concentration of solutes,

etc. Gels are poroelastic, involving coupled migration of the

solvent and stretching of the network. Experimental charac-

terization of their poroelasticity is challenging.

Recent studies have demonstrated that the poroelasticity

of gels can be characterized by indentation.9–13 Indentation

is easy to apply and is capable of probing local properties.

To characterize the time-dependent behavior of a material,

methods of indentation include pressing the indenter at a

constant velocity, or at a constant force, or with oscillating

depths, or to a fixed depth. Here we focus on a particular

method called the poroelastic relaxation indentation

(PRI).13–15 After the indenter is pressed into a gel to a fixed

depth, the force on the indenter relaxes as the solvent in the

gel migrates. The solution to the poroelastic boundary-value

problem takes a remarkably simple form, so that the force-

relaxation curve is readily used to extract the shear modulus,

Poisson’s ratio and the effective diffusivity of the gel.13 The

measured poroelastic constants of a gel can be correlated

with its molecular properties.16 The results obtained from the

PRI agree well with those obtained from a compression

test.17 The PRI has been applied to alginate hydrogels,13,17

polydimethylsiloxane (PDMS) swollen with organic sol-

vents,16 and a pH-sensitive hydrogel.18 The method has been

demonstrated with conical and spherical indenters.13,16 The

depth of indentation has ranged from micrometers to milli-

meters, and the time of indentation from seconds to hours.19

The PRI developed so far assumes that the radius of con-

tact is much smaller than the size of gels. Many applications,

however, use gels in the form of thin layers. Examples

include coatings for biocompatible surfaces, membranes for

fuel cells, and small samples of biological tissues. In this pa-

per, we develop the PRI to characterize gels of thickness

comparable to, or smaller than, the contact radius. Once

again we obtain the poroelastic solution in a simple form.

We then demonstrate the method of indentation with a thin

layer of PDMS immersed in heptane.

We adopt a theory of poroelasticity suitable for polymer

gels.11,13,14,20 Specifically, both the network and the solvent

are taken to be incompressible, so that the change in the vol-

ume of the gel is entirely due to the change in the concentra-

tion of the solvent. The theory characterizes a gel by three

poroelastic constants: the shear modulus G, Poisson’s ratio

�, and the effective diffusivity D.

Figure 1 illustrates the method of PRI. A gel of thick-

ness d is placed on a substrate. A spherical indenter, radius

R, is pressed into the gel to a depth h, forming a contact

radius a. Both the substrate and the indenter are rigid, imper-

meable, and frictionless. Subsequently, the indentation depth

is kept constant and the force is recorded as a function of

time, F(t). The object is to use the force-relaxation curve

F(t) to obtain the poroelastic constants of the gel.

We first consider the indentation of an elastic material

placed on a rigid substrate.21–27 From theoretical analysis

given by Yu et al.,27 we observe that when both the substrate

and the indenter are rigid and frictionless, the contact radius

and the force take the following forms:

a ¼
ffiffiffiffiffiffi
Rh
p

� l
ffiffiffiffiffiffi
Rh
p

=d
� �

; (1)

FIG. 1. (Color online) (a) Schematic of the experimental setup. (b) The

depth of indentation is kept constant. (c) The force on the indentor is

recorded as a function of time.a)Electronic mail: suo@seas.harvard.edu.
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F ¼ 8Gh
ffiffiffiffiffiffi
Rh
p

3ð1� �Þ � f
ffiffiffiffiffiffi
Rh
p

=d
� �

: (2)

In other words, the dimensionless functions lðxÞ and f ðxÞ are

independent of Poisson’s ratio. When the contact radius is

much smaller than the gel thickness,
ffiffiffiffiffiffi
Rh
p

=d ! 0, the Hertz-

ian contact is approached, so that a!
ffiffiffiffiffiffi
Rh
p

and

F! 8Gh
ffiffiffiffiffiffi
Rh
p

=3 1� �ð Þ. When the contact radius is much

larger than the thickness of the gel,
ffiffiffiffiffiffi
Rh
p

=d !1, the con-

tact radius approaches the radius of a spherical cap of height

h, so that a!
ffiffiffiffiffiffiffiffi
2Rh
p

; see Fig. 1(a). In this case, we solve the

elastic boundary-value problem analytically, and obtain

F! 2pGh2R=3d 1� �ð Þ. For intermediate values of
ffiffiffiffiffiffi
Rh
p

=d,

we solve a Fredholm integral equation numerically,27,28 and

plot the two functions lðxÞ and f ðxÞ in Fig. 2. Also included

in the figure are the fitting formulas of the functions.

We next consider the indentation of a layer of a poroe-

lastic gel on a rigid substrate. Instantaneously after the in-

denter is pressed into the gel, the solvent in the gel does not

have time to migrate, and the gel behaves like an incompres-

sible elastic solid. Setting � ¼ 1=2 in Eq. (2), we obtain the

short-time limit:

Fð0Þ ¼ 16Gh
ffiffiffiffiffiffi
Rh
p

3
� f

ffiffiffiffiffiffi
Rh
p

=d
� �

: (3)

After the indenter is held at the fixed depth for a long time,

the solvent in the gel redistribute into a state of equilibrium,

which is the same as that for a compressible elastic mate-

rial.11,13,14,20 Consequently, the long-time limit takes the

same form as Eq. (2), namely,

Fð1Þ ¼ 8Gh
ffiffiffiffiffiffi
Rh
p

3ð1� �Þ � f
ffiffiffiffiffiffi
Rh
p

=d
� �

: (4)

We solve the poroelastic problem by using the finite-element

software ABAQUS. The numerical results show that the force-

relaxation curve F(t) can be written in the form:

FðtÞ � Fð1Þ
Fð0Þ � Fð1Þ ¼ g

Dt

Rh
;

ffiffiffiffiffiffi
Rh
p

d

� �
: (5)

In other words, the dimensionless function g s; xð Þ is inde-

pendent of Poisson’s ratio. Numerical results of g s; xð Þ are

plotted in Fig. 2(c). All other variables being fixed, the thin-

ner the gel, the faster it relaxes. When the contact radius is

much smaller than the gel thickness,
ffiffiffiffiffiffi
Rh
p

=d ! 0, substrate

effect is negligible. We fit the numerical results for this case

to a formula, listed in Fig. 2(c), which provides a slightly

better fit than the one given in our previous paper.13 Individ-

ual expressions for
ffiffiffiffiffiffi
Rh
p

=d ¼0.25, 0.5, 0.75, and 1 are also

included. When the contact radius is much larger than the

gel thickness,
ffiffiffiffiffiffi
Rh
p

=d !1, the solvent flux is confined in

the radial direction in the gel. In this case Here, we solve the

poroelastic problem analytically by using the method of sep-

aration of variables,17 giving

FIG. 2. (Color online) (a) The normalized radius of contact is plotted as a

function of
ffiffiffiffiffiffi
Rh
p

=d. (b) The normalized force on the indenter is plotted as a

function of
ffiffiffiffiffiffi
Rh
p

=d. (c) The normalized force is plotted as a function of the

normalized time for several values of
ffiffiffiffiffiffi
Rh
p

=d. The red curves are numerical

results. The black dashed curves are curve fits to the numerical results.

FIG. 3. (Color online) The experimentally recorded force as a function of

time F(t) for six depths of indentation.

FIG. 4. (Color online) The force-relaxation curves recorded in the six runs

of the experiment are compared with the function g Dt=Rh;
ffiffiffiffiffiffi
Rh
p

=d
� �

obtained from the theory of poroelasticity.
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gðs;1Þ ¼
X1
n¼1

16

k3
n

J2 knð Þ
J1 knð Þ

exp � k2
n

2
s

� �
; (6)

where kn are the roots of J0ðkÞ ¼ 0, and JiðxÞ are the Bessel

functions of the first kind. The infinite series (6) is accurately

represented by the first two terms listed in Fig. 2(c). Note that

the numerical results closely approach the analytical result,

gðs;1Þ, when
ffiffiffiffiffiffi
Rh
p

=d � 1:5. For instance, the maximum

deviation between the numerical curve at
ffiffiffiffiffiffi
Rh
p

=d ¼ 1:5 and

gðs;1Þ is only 3% of the full range.

To demonstrate this method of indentation PRI, we

indent a layer of PDMS immersed in heptane, with thickness

d¼ 3.96 mm in the fully swollen state. Much of the

experimental detail follows our previous paper.16 Here, A

stainless-steel spherical indenter, radius R¼ 10 mm, is pressed

into the PDMS gel to six depths h¼ 20, 80, 160, 350, 500,

and 900 lm, corresponding to
ffiffiffiffiffiffi
Rh
p

=d ¼ 0:11; 0:23; 0:32;
0:47; 0:56; 0:76. The recorded force-relaxation curves are

given in Fig. 3. As expected both the magnitudes of the

force and the relaxation time varies with the indentation

depth.

The shear modulus of the gel is extracted by using

Eq. (3) from Fð0Þ recorded in each experiment. Equations (3)

and (5) give Fð0Þ=Fð1Þ ¼ 2 1� �ð Þ. This relation is used

to extract Poisson’s ratio of the gel by using the value

Fð0Þ=Fð1Þ recorded in each run of the experiment. Figure 4

plots each force-relaxation curve again, with the force normal-

ized as ½FðtÞ � Fð1Þ�= ½Fð0Þ � Fð1Þ�, and the time normal-

ized as Dt=Rh. A value of the effective diffusivity D is

determined such that the curve in each experiment fits g s; xð Þ.
Table I lists the shear modulus, Poisson’s ratio, and the

effective diffusivity determined by the above procedure. The

average values are G ¼ 740630 kPa, � ¼ 0:3460:03 and

D ¼ ð3:160:2Þ �10�9m2=s, which are are consistent with

values reported previously.16 This agreement confirms that

the method of indentation PRI works well for both thick and

thin layers of gels.

In summary, we have developed a method of indentation

to determine the poroelastic constants of thin gel layers. The

method is demonstrated with PDMS saturated with heptane.

We will report in a separate paper the application of the

method PRI to characterize the poroelastic relaxation of

hydrogel layers of different thicknesses.29 The ease of use of

PRI should enable quantitative characterization of thin layers

of gels and tissues.
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TABLE I. Poroelastic constants obtained from six runs of the experiment.

H (lm) 20 80 160 350 500 900

G (kPa) 684 750 759 732 766 767

� 0.40 0.33 0.33 0.35 0.32 0.32

D (10�9m2=s) 2.9 2.9 3.3 3.2 3.1 3.0
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